Skip to main content
Mitsutoshi Yoneyama, Takashi Fujita and Hiroki Kato

News categories: Publication

20 years RIG-I

An intriguing review reflecting on the development in the RIG-I research published in 'Immunity'.

Prof. Takashi Fujita from the Institute of Virus Research at the university of Bonn, Prof. Mitsutoshi Yoneyama from the Research Institute of Disaster Medicine at the Chiba University and Prof. Hiroki Kato from the Institute of Cardiovascular Immunology at the University Hospital in Bonn now published a collaborative review article in celebration of 20 years after the discovery of RIG-I. The article delves into the captivating realm of RIG-I research, exploring the advancements made over the past two decades. Published in the latest edition of "Immunity," the review sheds light on the critical role of Retinoic Acid-Inducible Gene I (RIG-I) receptors in the innate immune system.

Recognized as pattern recognition receptors (PRRs), RIG-I receptors play a crucial role in detecting viral RNA and initiating antiviral responses. Their discovery in the early 2000s revolutionized virology research, positioning RIG-I receptors as vital targets for therapeutic intervention against viral infections. Moreover, their involvement in autoimmune diseases, cancer immunotherapy, and vaccine development underscores their broad significance in biomedical research.

Summary

The RIG-I like receptor (RLR) is crucial for pathogen detection and triggering immune responses, and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLR and the mechanism of sensing non-self RNA are described. Usually, self-RNA is refractory to RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLR involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
 

Publication:

Mitsutoshi Yoneyama, Hiroki Kato, Takashi Fujita (2024), Volume 57, Issue 4, Pages 731-751

Physiological functions of RIG-I-like receptors

DOI: https://doi.org/10.1016/j.immuni.2024.03.003

Contact:

Prof. Hiroki Kato
Institute of Cardiovascular Immunology
University Hospital Bonn
E-mail: hkato@uni-bonn.de

Related news

Kathrin Leppek Publication PM

News categories: Publication

Starting points for the control of protein synthesis

Bonn researchers develop a versatile toolbox for the characterization of IRESes in cells.
View entry
Pandyra Publication Graphical Abstract

News categories: Publication

Genetic mutation affects survival after viral infection

Scientists discovered that haploinsufficiency in the Pax5 gene affects antiviral responses. The study was led by Prof. Dr. Aleksandra Pandyra from the Institute of Clinical Chemistry and Clinical Pharmacology at the University Hospital Bonn in collaboration with Prof. Dr. Arndt Borkhardt, Clinic Director at the Pediatric Oncology at the University Hospital Düsseldorf. The findings were published in the latest edition of EMBO Molecular Medicine.
View entry
AG Kürthen Multiple Sclerosis Bonn

News categories: Publication

Potential target for MS therapy discovered

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by the immune system. B cells, which are a type of white blood cell, play a role in the development of MS and are thus a target for therapies. Researchers at the University Hospital Bonn (UKB), the University of Bonn and the FAU Erlangen-Nuremberg identified the membrane protein MLC1 as a potential target antigen in MS. The results of the work have now been published in the renowned journal “Neurology Neuroimmunology & Neuroinflammation”.
View entry

Back to the news overview