Skip to main content
News Icon

News categories: Publication

Alzheimer's Study published in Cell Reports

Alzheimer's disease: Inflammation triggers fatal cycle

University of Bonn study proves disastrous contribution of an ancient immune mechanism

An immune reaction in the brain seems to play a major role in the development of Alzheimer's disease. In a way, it "adds fuel to the fire" and apparently causes an inflammation that, in a sense, keeps kindling itself. The study has now been published in the journal Cell Reports. Alzheimer's disease is characterized by clumps of the protein Aß (amyloid beta), which form large plaques in the brain. Aß resembles molecules on the surface of some bacteria. Over many millions of years, organisms have therefore developed defense mechanisms against such structures. These mechanisms are genetically determined and therefore belong to the so-called innate immune system. They usually result in certain scavenger cells absorbing and digesting the molecule.

In the brain, the microglia cells take over this role. In doing so, however, they trigger a devastating process that appears to be largely responsible for the development of dementia. On contact with Aß, certain molecule complexes, the inflammasomes, become active in the microglia cells. They then resemble a wheel with enzymes on the outside. These can activate immune messengers and thereby trigger an inflammation by directing additional immune cells to the site of action.

"Sometimes the microglia cells perish during this process," explains Prof. Dr. Michael Heneka, head of a research group at the German Center for Neurodegenerative Diseases (DZNE) and director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University Hospital Bonn. "Then they release activated inflammasomes into their environment, the ASC specks." Prof. Michael Heneka is a member of the Cluster of Excellence ImmunoSensation.


Publication

Lea L. Friker, Hannah Scheiblich, Inga V. Hochheiser, Rebecca Brinkschulte, Dietmar Riedel, Eicke Latz, Matthias Geyer and Michael T. Heneka: Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia; Cell Reports; DOI: 10.1016/j.celrep.2020.02.025

Contact

Prof. Dr. Michael Heneka

Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry

University Hospital Bonn

German Center for Neurodegenerative Diseases (DZNE)

Tel. +49-(0)228-28713091

E-mail: michael.heneka@dzne.de

Related news

The human P2X4 receptor

News categories: Publication

A starting point for the development of new pain and cancer drugs

The human P2X4 receptor plays an important role in chronic pain, inflammation and some types of cancer. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have now discovered a mechanism that can inhibit this receptor. The results were recently published in the scientific journal Nature Communications and open up a pathway for the development of new drugs. A study carried out by the University of Bonn and the University Hospital Bonn throws light on how P2X2 can be inhibited. The results have recently been published in Nature Communications.
View entry
Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry
News_Proebstel

News categories: Publication

Unique immune signatures to distinguish MOGAD from MS

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune condition in which the body’s immune system mistakenly attacks the protective myelin sheath of nerve fibers in the central nervous system. Although MOGAD induces symptoms similar to multiple sclerosis (MS), its underlying biology appears to be fundamentally different. Understanding these distinctions is crucial for developing effective, disease-specific treatments. A new international study now sheds light on these immune differences.
View entry

Back to the news overview