Skip to main content
News Icon

News categories: Publication

Alzheimer's Study published in Cell Reports

Alzheimer's disease: Inflammation triggers fatal cycle

University of Bonn study proves disastrous contribution of an ancient immune mechanism

An immune reaction in the brain seems to play a major role in the development of Alzheimer's disease. In a way, it "adds fuel to the fire" and apparently causes an inflammation that, in a sense, keeps kindling itself. The study has now been published in the journal Cell Reports. Alzheimer's disease is characterized by clumps of the protein Aß (amyloid beta), which form large plaques in the brain. Aß resembles molecules on the surface of some bacteria. Over many millions of years, organisms have therefore developed defense mechanisms against such structures. These mechanisms are genetically determined and therefore belong to the so-called innate immune system. They usually result in certain scavenger cells absorbing and digesting the molecule.

In the brain, the microglia cells take over this role. In doing so, however, they trigger a devastating process that appears to be largely responsible for the development of dementia. On contact with Aß, certain molecule complexes, the inflammasomes, become active in the microglia cells. They then resemble a wheel with enzymes on the outside. These can activate immune messengers and thereby trigger an inflammation by directing additional immune cells to the site of action.

"Sometimes the microglia cells perish during this process," explains Prof. Dr. Michael Heneka, head of a research group at the German Center for Neurodegenerative Diseases (DZNE) and director of the Department of Neurodegenerative Diseases and Gerontopsychiatry at the University Hospital Bonn. "Then they release activated inflammasomes into their environment, the ASC specks." Prof. Michael Heneka is a member of the Cluster of Excellence ImmunoSensation.


Publication

Lea L. Friker, Hannah Scheiblich, Inga V. Hochheiser, Rebecca Brinkschulte, Dietmar Riedel, Eicke Latz, Matthias Geyer and Michael T. Heneka: Amyloid Clustering around ASC Fibrils Boosts Its Toxicity in Microglia; Cell Reports; DOI: 10.1016/j.celrep.2020.02.025

Contact

Prof. Dr. Michael Heneka

Director of the Department of Neurodegenerative Diseases and Gerontopsychiatry

University Hospital Bonn

German Center for Neurodegenerative Diseases (DZNE)

Tel. +49-(0)228-28713091

E-mail: michael.heneka@dzne.de

Related news

Pandyra Publication Graphical Abstract

News categories: Publication

Genetic mutation affects survival after viral infection

Scientists discovered that haploinsufficiency in the Pax5 gene affects antiviral responses. The study was led by Prof. Dr. Aleksandra Pandyra from the Institute of Clinical Chemistry and Clinical Pharmacology at the University Hospital Bonn in collaboration with Prof. Dr. Arndt Borkhardt, Clinic Director at the Pediatric Oncology at the University Hospital Düsseldorf. The findings were published in the latest edition of EMBO Molecular Medicine.
View entry
AG Kürthen Multiple Sclerosis Bonn

News categories: Publication

Potential target for MS therapy discovered

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by the immune system. B cells, which are a type of white blood cell, play a role in the development of MS and are thus a target for therapies. Researchers at the University Hospital Bonn (UKB), the University of Bonn and the FAU Erlangen-Nuremberg identified the membrane protein MLC1 as a potential target antigen in MS. The results of the work have now been published in the renowned journal “Neurology Neuroimmunology & Neuroinflammation”.
View entry
NLRP3 Alzheimers McManus

News categories: Publication

Reducing Neuroinflammation Could Help Fight Alzheimer’s

Alzheimer’s disease is the most common cause of dementia. A promising approach for its treatment is the prevention of inflammatory processes in the brain. An international team of scientists around Dr. Róisín McManus, Prof. Eicke Latz and Prof. Michael Heneka now provide new evidence supporting this approach and potentially contributing to the development of more effective therapies. The results have now been published in the journal “Immunity”.
View entry

Back to the news overview