Skip to main content
News Krawitz 11.2021
© UKB

News categories: Publication

Artificial Intelligence helps diagnose Leukemia

Software trained with more than 30.000 data sets from B-Cell Lymphoma patients


ImmunoSensation2 Member Prof. Dr. Peter Krawitz and his team showed, how artificial Intelligence can help in the diagnosis of lymphomas and leukemias already in 2020. The machine learning method developed by the scientists has since been further developed. It is made freely accessible and may be utilized also by smaller laboratories. The respective study has now been published in "Patterns".

Leukemia diagnostics relies on the analysis of blood- or bone marrow samples by flow cytometry. Large amounts of data are generated, as various markers are needed in addition to parameters like cell-size and -shape. “With 20 markers, the physician would already have to compare about 150 two-dimensional images," says Prof. Dr. Peter Krawitz from the Institute for Genomic Statistics and Bioinformatics at Bonn University Hospital. "That's why it's usually too costly to sift through the entire data set thoroughly."

In order to train the artificial intelligence (AI), Prof. Krawitz and the bioinformaticians Nanditha Mallesh and Max Zhao analyzed more than 30,000 data sets from patients with B-cell lymphomas. "The AI takes full advantage of the data and increases the speed and objectivity of the diagnoses," says Nanditha Mallesh. Still, the result presented by the AI can only be considered as suggestion and has to be reviewed by the physician. "The point of using AI is not to replace physicians, but to make the best use of the information contained in the data in the best possible way." Prof. Krawitz states.

The big step that brings the method closer to a broad clinical application is the free availability of the AI. The knowledge transfer offered also enables small laboratories to benefit from the development. Only a short training period is needed for the AI to internalize the specifics of the new lab. Subsequently, the knowledge derived from many thousands of data sets is available. All raw data and the complete software are open source and thus freely accessible. "With https://hema.to, we want to enable the exchange of anonymized flow cytometry data between laboratories and thus create the conditions for even higher quality in diagnostics," says Dr. Hannes Lüling from res mechanica.

The team sees great potential in this technology. For the diagnosis of B-cell lymphomas, also genetic and cytomorphological data are collected. "If we can succeed in using AI for these methods as well, then we would have an even more powerful tool," says Prof. Krawitz.


Funding

The study was funded by the German Research Foundation.


Publication

Nanditha Mallesh, Max Zhao, Lisa Meintker, Alexander Höllein, Franz Elsner, Hannes Lüling, Torsten Haferlach, Wolfgang Kern, Jörg Westermann, Peter Brossart, Stefan W. Krause, Peter M. Krawitz: Knowledge transfer to enhance the performance of deep learning models for automated classification of B-cell neoplasms, Patterns, DOI: 10.1016/j.patter.2021.100351

Contact

Prof. Dr. med. Dipl. Phys. Peter Krawitz

Institute for Genomic Statistics and Bioinformatics

University Hospital Bonn

Phone +49 228 287 14799

E-mail: pkrawitz@uni-bonn.de

Related news

Kathrin Leppek Publication PM

News categories: Publication

Starting points for the control of protein synthesis

Bonn researchers develop a versatile toolbox for the characterization of IRESes in cells.
View entry
Pandyra Publication Graphical Abstract

News categories: Publication

Genetic mutation affects survival after viral infection

Scientists discovered that haploinsufficiency in the Pax5 gene affects antiviral responses. The study was led by Prof. Dr. Aleksandra Pandyra from the Institute of Clinical Chemistry and Clinical Pharmacology at the University Hospital Bonn in collaboration with Prof. Dr. Arndt Borkhardt, Clinic Director at the Pediatric Oncology at the University Hospital Düsseldorf. The findings were published in the latest edition of EMBO Molecular Medicine.
View entry
AG Kürthen Multiple Sclerosis Bonn

News categories: Publication

Potential target for MS therapy discovered

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by the immune system. B cells, which are a type of white blood cell, play a role in the development of MS and are thus a target for therapies. Researchers at the University Hospital Bonn (UKB), the University of Bonn and the FAU Erlangen-Nuremberg identified the membrane protein MLC1 as a potential target antigen in MS. The results of the work have now been published in the renowned journal “Neurology Neuroimmunology & Neuroinflammation”.
View entry

Back to the news overview