Skip to main content
News_Thurley_03.2023
Mouse lymph nodes: - The colors represent fluorescent markers that bind to specific molecules on the surface or inside individual immune cells. In the project, analyses of similar images from patients are planned, which will provide information about the type and positioning of immune cells in the vicinity of tumor cells.
© Image: AG Hoelzel / UKB

News categories: Honors & Funding

Artificial intelligence to help tumor immunology

Researchers want to study the environment of cancer cells in more detail. Federal Ministry of Education and Research funds project with 800,000 euros.

The success of cancer treatment depends not only on the type of tumor, but also on the surrounding tissue. Tumors influence it to their advantage, promoting the growth of blood vessels or fooling incoming immune cells. Developing methods to predict the nature of the resulting tumor microenvironment is the goal of researchers from the Clusters of Excellence ImmunoSensation2 and the Hausdorff Center for Mathematics (HCM) led by Prof. Kevin Thurley at the University of Bonn. The German Federal Ministry of Education and Research (BMBF) is funding the "InterpretTME" project with around 800,000 euros over the next three years.

Cancer treatment has been revolutionized in the past decade by new methods of immunotherapy. This involves not attacking a tumor directly, but rather using the existing cells of the immune system. These are usually able to recognize and eliminate malignant tumor cells. However, many tumors have the ability to prevent or severely limit an effective immune response. Immunotherapy aims to restore the misguided immune system's ability to recognize and destroy tumor cells.

The role of the tumor microenvironment
 

Immunotherapy against cancer is not successful in all patients. Resistance to cancer immunotherapies has been shown to be frequently associated with tumor microenvironment (TME) composition. In oncology, the properties of the TME are already being used as biomarkers to make predictions about how a cancer will develop. This is done using imaging techniques that map the type and location of individual cells within the TME. Patterns of gigantic cell assemblies emerge, which in their totality and structure influence the success or failure of cancer immunotherapy. How exactly this works, however, remains elusive.

"New high-resolution imaging techniques have shown that disease mechanisms are indeed related to details of the spatial arrangement of specific cell types in tissues," notes Prof. Kevin Thurley of the Institute of Experimental Oncology at the University Hospital Bonn. "Using a combination of mathematical modeling and artificial intelligence methods, we will investigate these phenomena in detail, in direct collaboration with experimental and clinical research at our University Hospital."

Artificial intelligence for tissue analysis

Artificial intelligence (AI)-based methods for image analysis are already well advanced today. The situation is different when simulating complex systems, due to the large number of interacting cells within a tissue. Given the multitude of cell types involved, the different cellular processes taking place there, and the complex tissue architecture, such a simulation requires extremely high computational resources. However, it can help to simulate the TME of a tumor and thus draw conclusions about tumor development.

Insights into immunotherapy through machine learning

The overall goal of "InterpretTME" is to develop interpretable machine learning (ML) methods for studying complex cellular systems. These are to be used to gain insights into the nature of TMEs. "Machine learning is already used in many places in the hospital to process imagedata," explains Prof. Jan Hasenauer, of the Life & Medical Sciences Institute (LIMES) at the University of Bonn. "We will go one step further and investigate the extent to which information about mechanisms can also be obtained." One aim is to investigate the role that individual immune cell types present in the TME play in the development 
of different tumor types. In addition, the researchers want to determine what effect chemotherapeutic agents and biological drugs have on the TME of different tumor types. Prof. Michael Hölzel and Prof. Marieta Toma from the University Hospital Bonn and Prof. Alexander Effland from the University of Bonn are also involved in the project.

Jan Hasenauer, Kevin Thurley, and Alexander Effland are the group leaders of the Interdisciplinary Research Unit (IRU) Mathematics and Life Sciences at the Unversity of Bonn.


 

Contact

Dr. David Fußhöller

Cluster of Excellence ImmunoSensation2

University of Bonn

Tel. (+49) 228 287 512 81

E-mail: David.fusshoeller@uni-bonn.de

Related news

Bone2Gene Funding Peter Krawitz

News categories: Honors & Funding

“Bone2Gene” Secures €1 Million Grant

The “Bone2Gene” project of researchers from the University of Bonn and University Hospital Bonn has been awarded funding worth €1,000,000 as part of the Federal Ministry of Education and Research’s GO-Bio initial program. The money is now enabling the team arround ImmunoSensation Member Prof. Peter Krawitz, to progress to the feasibility phase and get its product ready for market launch. “Bone2Gene“ is using artificial intelligence (AI) to make genetic bone conditions known as skeletal dysplasia easier to spot and diagnose.
View entry
W1 female immunity

News categories: Honors & Funding

New junior professorship for female immunity in Bonn

Anchoring gender perspectives in research: with this aim in mind, the Ministry of Culture and Science of the state of North Rhine-Westphalia is promoting gender denomination for professorships. The University of Excellence Bonn is now receiving a new junior professorship for female immunity at the Faculty of Medicine from the programme. The junior professorship is intended to expand the research focus on immunology at the University of Bonn and the University Hospital Bonn (UKB) to include important issues relating to gender and gender-specific aspects in immunology and women's health.
View entry
Elvira Mass MagNet: Macrophage Niche Network Dynamics

News categories: Honors & Funding

The ‘choreographers’ of tissue development and function

The German Research Foundation (DFG) is setting up a new research group at the University of Bonn. ‘MagNet: Macrophage Niche Network Dynamics’ is dedicated to the systematic study of macrophages, specialised immune cells that play a central role in tissue development and function. The spokesperson of the research group is ImmunoSensation member Prof Dr Elvira Mass from the University of Bonn, supported by co-spokesperson Prof Dr Falk Nimmerjahn from Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
View entry

Back to the news overview