Skip to main content
News Icon

News categories: Publication

Artificial Intelligence Tracks down Leukemia

Artificial intelligence can detect one of the most common forms of blood cancer - acute myeloid leukemia (AML) - with high reliability. Researchers at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn have now shown this in a proof-of-concept study. Their approach is based on the analysis of the gene activity of cells found in the blood. Used in practice, this approach could support conventional diagnostics and possibly accelerate the beginning of therapy. The research results have been published in the journal “iScience”.

Cluster member and speaker of the Cluster of Excellence Prof. Joachim Schultze led the study in Bonn.

Publication

Scalable prediction of acute myeloid leukemia using high-dimensional machine learning and blood transcriptomics; Stefanie Warnat-Herresthal, Konstantinos Perrakis et al., iScience (2019),
DOI: 10.1016/j.isci.2019.100780

Related news

Sophie Binder, Gregor Hagelüken, Niels Schneberger in the laboratory

News categories: Publication

Gene scissors switch off with built-in timer

CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal "Nucleic Acids Research".
View entry
PM Ludwig Covid Genetik Studie TLR7 1200px

News categories: Publication

Large genetic study on severe COVID-19

Whether or not a person becomes seriously ill with COVID-19 depends, among other things, on genetic factors. With this in mind, researchers from Bonn, in cooperation with other research teams, investigated a particularly large group of affected individuals. They confirmed the central and already known role of the TLR7 gene in severe courses of the disease in men, but were also able to find evidence for a contribution of the gene in women. In addition, they were able to show that genetic changes in three other genes of the innate immune system contribute to severe COVID-19.
View entry
PM Krawitz

News categories: Publication

Genetic diagnostics of ultra-rare diseases

The majority of rare diseases have a genetic cause. The underlying genetic alteration can be found more and more easily, for example by means of exome sequencing (ES), leading to a molecular genetic diagnosis. ES is an examination of all sections of our genetic material (DNA) that code for proteins. As part of a Germany-wide multicenter study, ES data was collected from 1,577 patients and systematically evaluated.
View entry

Back to the news overview