Skip to main content
Scientists from the University Hospital Bonn and the University of Bonn discover an important membrane transport mechanism in pathogenic bacteria. PD Dr. Gregor Hagelueken (left) and Philipp Hendricks (right) are part of the research team.

News categories: Publication

Scientists discover a membrane transport system of bacteria

Researchers from the University Hospital of Bonn and the University of Bonn in collaboration with the University of York studied an important class of bacterial membrane transporters and their interaction with soluble substrate binding proteins. They found that transporter and its substrate binding protein adapt to each other rapidly and that these interactions are crucial for the working mechanism of the transporter system.

Membrane transport mechanisms are crucial for the survival of pathogenic bacteria as they, for instance, allow resistance against the host’s immune system. Thus, it is important to understand the underlying molecular mechanism of bacterial membrane transporters and ultimately to find ways to modulate or block them.

A membrane transport mechanism working like a molecular freight elevator

Pathogenic bacteria such as Haemophilus influenzae use tripartite ATP-independent periplasmic (TRAP) transporters to facilitate the uptake of sialic acid into the bacterial cell. Sialic acid is a small sugar molecule that is abundant in our tissues. H. influenzae bacteria can harvest the sialic acid and incorporate it into their own cell wall, thereby camouflaging themselves from the host’s immune system. The TRAP transporter comprises of two transmembrane domains that span the inner membrane of the bacterium and is supported by a substrate binding protein (SBP). Once the SBP encounters a sialic acid molecule, it undergoes a large conformational change, tightly binds the sialic acid and transports it to the TRAP transporter. In the next step, the transporter grabs the sialic acid from the SBP and translocates it across the membrane into the bacterial cell.

The TRAP transporter system can undergo distinct conformational changes


Each of the two proteins can adopt two different conformational states, the open- and closed state of the SBP and the inward- and outward-facing state of the transporter. The research team led by PD Dr. Gregor Hagelueken from the Institute of Structural Biology at the University Hospital of Bonn who is supported by the ImmunoSensation2 Cluster of Excellence and the Transdisciplinary Research Area (TRA) “Life & Health” suspected that there is a ”conformational coupling” between the TRAP transporter and its SBP, meaning that the closed state of the SBP selectively recognizes the inward-facing state of the transporter, while the open state of the SBP preferably interacts with the outward-facing state of the transporter. The team was able to lock both the transporter and its SBP in their conformational states by employing disulfide engineering and found that TRAP transporter and SBP could indeed recognize the conformational state of the other.
By using biophysical and structural biology experiments, as well as advanced microscopy techniques provided in collaboration with Prof. Dr. Ulrich Kubitscheck from the Clausius Institute of Physical and Theoretical Chemistry at the University of Bonn, it was possible to precisely observe the working mechanism of TRAP transporter and the SBP. The researchers incorporated the TRAP transporter into artificial membranes and employed single-molecule fluorescence microscopy to observe the interaction between TRAP transporter and SBP in real time, giving insights into the working principle of the transporter system.
The interesting study was recently published in Nature Communications and sheds light on the structural properties and therefore the working mechanism of SBP-dependent bacterial membrane transport systems.

Publication

Martin F. Peter, Jan A. Ruland, Yeojin Kim, Philipp Hendricks et al. (2024)

Conformational coupling of the sialic acid TRAP transporter HiSiaQM with its substrate binding protein HiSiaP

Nature Communications

DOI: https://doi.org/10.1038/s41467-023-44327-3

Contact

PD Dr. Gregor Hagelueken

Institute of Structural Biology
University Hospital Bonn (UKB)
Immunosensation2 Cluster of Excellence & TRA "Life & Health" at University of Bonn

Phone: +49 (0)228 287-51200
E-mail: hagelueken@uni-bonn.de

Related news

Basmanav

News categories: Publication

Inflammatory diseases influence the course of hair loss

Asthma, atopic dermatitis or Hashimoto's thyroiditis as concomitant diseases are risk factors for clinical features associated with a poor prognosis in circular hair loss, also known as alopecia areata (AA). In patients with three atopic diseases, namely atopic dermatitis, asthma and rhinitis, the average age of onset of AA is about ten years earlier than in patients without chronic inflammatory comorbidities. This has now been established by researchers from Bonn in a large cohort study of affected patients. Their results have now been published in the journal "Allergy".
View entry
Showing how the genes relevant to diseases can be identified more easily - (clockwise from top left): Alexander Hoch, Katja Blumenstock, Marius Jentzsch, Caroline Fandrey und Prof. Jonathan Schmid-Burgk.

News categories: Publication

Colored nuclei reveal cellular key genes

The identification of genes involved in diseases is one of the major challenges of biomedical research. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have developed a method that makes their identification much easier and faster: they light up genome sequences in the cell nucleus. In contrast to complex screenings using established methods, the NIS-Seq method can be used to investigate the genetic determinants of almost any biological process in human cells. The study has now been published in Nature Biotechnology.
View entry
News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry

Back to the news overview