Skip to main content
News Bradke 08.2019
(Dorsal root ganglia) neuron under the microscope.
© Barbara Schaffran / DZNE

News categories: Publication

Cluster Member Bradke publishes in Neuron

Cluster member Prof. Bradke, who works at the German Center for Neurodegenerative Diseases (DZNE) and his group have identified a group of proteins that help to regenerate damaged nerve cells. Their findings are reported in the journal "Neuron".

It is commonly accepted that neurons of the central nervous system shut down their ability to grow when they no longer need it; this occurs normally after they have found their target cells and established synapses. However, recent findings show that old nerve cells have the potential to regrow and to repair damage similar to young neurons. The underlying mechanisms for this rejuvenation have now been uncovered in laboratory studies led by the team of Professor Frank Bradke at the DZNE's Bonn site together with scientists of the University of Bonn.


Publication

ADF/Cofilin-Mediated Actin Turnover Promotes Axon Regeneration in the Adult CNS. Andrea Tedeschi, Sebastian Dupraz, Michele Curcio, Claudia J. Laskowski, Barbara Schaffran et al. Neuron (2019). DOI: 10.1016/j.neuron.2019.07.007

Related news

Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry
News Icon

News categories: Publication

Unique immune signatures to distinguish MOGAD from MS

Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is a rare autoimmune condition in which the body’s immune system mistakenly attacks the protective myelin sheath of nerve fibers in the central nervous system. Although MOGAD induces symptoms similar to multiple sclerosis (MS), its underlying biology appears to be fundamentally different. Understanding these distinctions is crucial for developing effective, disease-specific treatments. A new international study now sheds light on these immune differences.
View entry
Collage Boztug Kalinichenko Huemer 1200px

News categories: Publication

How immune cells deliver their deadly cargo

Precision is crucial for immune cells: natural killer (NK) cells and T cells eliminate infected or transformed cells by releasing targeted, highly toxic particles. A new study from the CeMM (Research Center for Molecular Medicine of the Austrian Academy of Sciences), the St. Anna Children’s Cancer Research Institute, the Medical University of Vienna, the Medical University of Graz, the University Hospital Bonn (UKB) and the University of Bonn offers deeper insight into how these so-called cytotoxic granules are released.
View entry

Back to the news overview