Skip to main content
News Icon

News categories: Publication

Heinsberg-Study Published

Bonn-based research team determine COVID-19 infection fatality ratein "Heinsberg Study"

The district of Heinsberg in the German state of North Rhine-Westphalia is considered a hot spot for the novel Coronavirus SARS-CoV-2. Following a carnival celebration, the district became one of the first areas in Germany where the pathogen spread and infected large quantities of people. As part of the study, a research team led by Prof. Dr. Hendrik Streeck and Prof. Dr. Gunther Hartmann from the University of Bonn and members of the Cluster of Excellence ImmunoSensation2 carried out a large study to precisely determine the infection fatality rate for the first time among other findings. The results of the study have been pre-published and are now presented to scientists and the public. Publication in a peer-reviewed journal is to follow.

"The results can be used to further improve models on the transmission behavior of the virus. Until now, basis for such data has been relatively uncertain," says co-author Prof. Dr. Gunther Hartmann, Director of the Institute for Clinical Chemistry and Clinical Pharmacology at the University Hospital Bonn and speaker of the Cluster of Excellence, ImmunoSensation2. The study also provides important indicators for further research on SARS-CoV-2 such as: the infection risk dependent on age, gender and pre-existing conditions; the increased severity of illness amidst special circumstances of a massive infection incident such as in Gangelt, or on the risk of infection within families.


Publication

Infection fatality rate of SARS-CoV-2 infection in a German community with a super-spreading event Hendrik Streeck, Bianca Schulte, Beate M. Ku¨mmerer, Enrico Richter, Tobias Höller, Christine Fuhrmann, Eva Bartok, Ramona Dolscheid, Moritz Berger, Lukas Wessendorf, Monika Eschbach-Bludau, Angelika Kellings, Astrid Schwaiger, Martin Coenen, Per Hoffmann, Birgit Stoffel-Wagner, Markus M. Nöthen, Anna-Maria Eis-Hu¨binger, MartinExner, Ricarda Maria Schmithausen, Matthias Schmid and Gunther Hartmann, https://www.medrxiv.org/content/10.1101/2020.05.04.20090076v2


Contact for the media

Dr. Andreas Archut

University Communications

University of Bonn

Phone: +49 (0)228 73-7647

E-Mail: kommunikation@uni-bonn.de

Related news

News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry
Sophie Binder, Gregor Hagelüken, Niels Schneberger in the laboratory

News categories: Publication

Gene scissors switch off with built-in timer

CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal "Nucleic Acids Research".
View entry

Back to the news overview