Skip to main content
Domnica Luca AG Kato

News categories: Publication

Dysregulation of T cell homeostasis

Dysregulation of regulatory T cell homeostasis by ADAR1 deficiency and chronic MDA5 signaling

The research team of Prof. Dr. Hiroki Kato at the Institute of Cardiovascular Immunology is dedicated to understanding the intricate mechanisms of immune responses in the context of viral infections and autoimmune diseases. They are particularly interested in exploring how cytoplasmic RNA sensors, like MDA5, differentiate between viral RNAs and self-RNAs, initiating type I interferons (IFNs) as anti-viral defense. However, mutations in MDA5 can lead to autoimmune diseases. Complementary to that, Domnica Luca et al. recently published her findings in Science Advances with the title "Dysregulation of regulatory T cell homeostasis by ADAR1 deficiency and chronic MDA5 signaling."


Abstract: ADAR1 deficiency constitutively activates MDA5 and causes type I IFN-driven autoimmune diseases. We found a significant reduction in the regulatory T cell (Treg) population in patients with type I interferonopathies caused by mutations in the ADAR1 or IFIH1 gene, encoding MDA5. We analyzed the underlying mechanisms using murine models and found that Treg-specific Adar1 deletion caused peripheral Treg loss and scurfy-like lethal autoimmune disorders. Treg-specific expression of MDA5 gain-of-function mutant also reduced the peripheral Treg population via apoptosis, resulting in severe autoimmune symptoms. However, shut-down of MDA5 signaling in Adar1-deficient Tregs still induced eIF-2α-mediated protein synthesis shut-off, leading to Treg loss and lethality. Altogether, our results highlight the dysregulation of Treg homeostasis in Adar1 deficiency as a key determinant for type I interferonopathies.

Publication:

Luca, D., et al. (2024)

Dysregulation of regulatory T cell homeostasis by ADAR1 deficiency and chronic MDA5 signaling

Science Advances

DOI: 10.1126/sciadv.adk0820

Related news

News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry
Sophie Binder, Gregor Hagelüken, Niels Schneberger in the laboratory

News categories: Publication

Gene scissors switch off with built-in timer

CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal "Nucleic Acids Research".
View entry

Back to the news overview