Skip to main content
Bonn Researchers Kidney

News categories: Publication

Navigation software supports kidney research

Bonn researchers develop method for three-dimensional image processing to solve the mystery of kidney inflammation.

Many kidney diseases are manifested by protein in the urine. However, until now it was not possible to determine whether the protein excretion is caused by only a few, but severely damaged, or by many moderately damaged of the millions of small kidney filters, known as glomeruli. Researchers at the University Hospital Bonn, in cooperation with mathematicians from the University of Bonn, have developed a new computer method to clarify this question experimentally. The results of their work have now been published as an article in press in the leading kidney research journal "Kidney International".

Chronic inflammatory kidney diseases cause serious illnesses, including complete kidney failure, which must be treated with extensive regular blood washing or kidney transplantation. Most of these diseases manifest themselves through protein excretion in the urine. This is because the millions of small filters in the kidneys, known as glomeruli, are damaged and therefore no longer retain protein. It has not yet been possible to determine whether only a few, but severely damaged, or many moderately damaged glomeruli are responsible for protein excretion in the urine. "This is of great importance for therapy and prognosis and could well differ in the many different forms of kidney disease," says first author Dr. Alexander Böhner, assistant physician at the Clinic for Diagnostic and Interventional Radiology at the UKB, describing the motivation to get to the bottom of this question experimentally in small animal models of kidney disease.

Using the visibility of fluorescent protein to solve puzzles

Behind each glomerulus is a tiny channel in which the urine is processed before it reaches the bladder. If protein is detected in this channel, the associated filter must be defective. The challenge now was to identify this glomerulus. "This was previously an impossible task, because the human kidney consists of millions of glomeruli with tubules that wrap around each other in a complex three-dimensional manner," says senior author Prof. Christian Kurts from the Institute of Molecular Medicine and Experimental Immunology at the UKB. He is also a member of the Transdisciplinary Research Area 3 (TRA 3) "Life & Health" and the Cluster of Excellence Immunosensation2 at the University of Bonn. The research team solved this problem by making the kidney chemically transparent and imaging it completely using light sheet fluorescence microscopy. The Bonn researchers then combined an image enhancement algorithm with a highly parallelized geometric algorithm that uses a principle similar to that used in navigation devices to determine the fastest route on a two-dimensional map. This made it possible to determine in three dimensions from which defective glomerulus misfiltrated protein originated in a complete kidney. "The algorithm added up all the protein detected in the glomerulus in question and thus determined how much protein it had incorrectly filtered, i.e. how badly damaged it was," says co-first author Prof. Alexander Effland from the Interdisciplinary Research Unit (IRU) "Mathematics and life sciences" of the Hausdorff Center for Mathematics (HCM) at the University of Bonn, who is also the spokesperson for TRA 1 "Modeling" at the University of Bonn. "The result was a map that shows each glomerulus and its damage in a different color."

Map of defective kidney filters enables detailed analysis of inflamed kidneys

The Bonn researchers applied this technique to a model of rapid-progressive glomerulonephritis, a particularly aggressive form of kidney inflammation. They found that there are regions in which severely damaged glomeruli are concentrated. This is important for diagnosis by kidney biopsy, in which a sample is taken from the kidney and examined. "If this sample is taken by chance from a severely affected area, the microscopic examination would overestimate the severity of the inflammation of the entire kidney," summarizes Prof. Kurts. This technique will provide completely new insights into the development of kidney diseases. In principle, it can also be applied to other organs with a modular structure, i.e. consisting of many functional units, such as the liver or lungs.

Sponsorships:

This work was funded by the DFG, in particular the Cluster of Excellence ImmunoSensation2 and the Hausdorff Center for Mathematics at the University of Bonn as well as the Bonfor program for young researchers at the Medical Faculty of Bonn.

Publication:

Alexander M. C. Böhner et al (2024)

Determining individual glomerular proteinuria and periglomerular infiltration in a cleared murine kidney by 3D fast-marching algorithm

Kidney International; DOI: https://doi.org/10.1016/j.kint.2024.01.043

Contact:

Prof. Christian Kurts

Institute of Molecular Medicine and Experimental Immunology (IMMEI)

Bonn University Hospital

Phone: +49-(0) 228-287 11050

E-mail: ckurts@uni-bonn.de

Press contact:

Dr. Inka Väth

Deputy Press Officer at the University Hospital Bonn (UKB)

Communications and Media Office at Bonn University Hospital

E-mail: inka.vaeth@ukbonn.de

Related news

Showing how the genes relevant to diseases can be identified more easily - (clockwise from top left): Alexander Hoch, Katja Blumenstock, Marius Jentzsch, Caroline Fandrey und Prof. Jonathan Schmid-Burgk.

News categories: Publication

Colored nuclei reveal cellular key genes

The identification of genes involved in diseases is one of the major challenges of biomedical research. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have developed a method that makes their identification much easier and faster: they light up genome sequences in the cell nucleus. In contrast to complex screenings using established methods, the NIS-Seq method can be used to investigate the genetic determinants of almost any biological process in human cells. The study has now been published in Nature Biotechnology.
View entry
News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry

Back to the news overview