Skip to main content
News Ulas 10.2019
During tumor development, macrophages (brown), the scavengers of the immune system, migrate into the diseased tissue (cancer cells: blue) without destroying it.
© Karin E. de Visser / the Netherlands Cancer Institute

News categories: Publication

New method identifies aggressive breast cancer

Aggressive forms of breast cancer often manipulate the immune response in their favor. This manipulation is revealed in humans by the same immunological "signature" as in mice. This is shown by a study carried out by scientists from the University of Bonn and memebers of the Cluster of Excellence ImmunoSensation together with Dutch colleagues. Their method makes it possible to obtain an indication of the prognosis of the disease using patients' tumor tissue. The results are published in the journal "Cell Reports".


Publication

Sander Tuit, Camilla Salvagno, Theodore S. Kapellos, Cheei-Sing Hau, Lea Seep, Marie Oestreich, Kathrin Klee, Karin E. de Visser, Thomas Ulas und Joachim L. Schultze: Transcriptional signature derived from murine tumor-associated macrophages correlates with poor outcome in breast cancer patients. Cell Reports; DOI: 10.1016/j.celrep.2019.09.067

Contact

Dr. Thomas Ulas

Head of the Bioinformatics Working Group

LIMES-Institute

University of Bonn

Tel. +49-228-7362722

E-mail: t.ulas@uni-bonn.de

Related news

News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry
Sophie Binder, Gregor Hagelüken, Niels Schneberger in the laboratory

News categories: Publication

Gene scissors switch off with built-in timer

CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal "Nucleic Acids Research".
View entry

Back to the news overview