Skip to main content
News Icon

News categories: Publication

Possible SARS-CoV-2 mass testing with new technology

Prof. Dr. Jonathan Schmid-Burgk heads the new working group for "Functional Immunogenomics" at the Institute for Clinical Chemistry and Clinical Pharmacology at the University Hospital Bonn. As part of the newly established professorship and management position, the 34-year-old genome researcher is investigating the complex interplay between genes and our immune system. With the help of robotics and artificial intelligence (AI), he is developing new techniques for protein analysis in living human cells with programmable gene scissors. The aim is to accelerate the modification of the human genome in order to analyze it. Prof. Schmid-Burgk is currently working on a mass test for COVID-19 using the LAMP-Seq process he developed. He brings his new techniques to the Cluster of Excellence ImmunoSensation at the University of Bonn. Following his doctorate, for which he received the doctoral award from the Bonn University Society in 2017, his previous academic career led Prof. Schmid-Burgk to Cambridge (USA). There he spent three and a half years researching at the Broad Institute of MIT and Harvard - funded by a grant from the European Molecular Biology Organization (EMBO).

Related news

Showing how the genes relevant to diseases can be identified more easily - (clockwise from top left): Alexander Hoch, Katja Blumenstock, Marius Jentzsch, Caroline Fandrey und Prof. Jonathan Schmid-Burgk.

News categories: Publication

Colored nuclei reveal cellular key genes

The identification of genes involved in diseases is one of the major challenges of biomedical research. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have developed a method that makes their identification much easier and faster: they light up genome sequences in the cell nucleus. In contrast to complex screenings using established methods, the NIS-Seq method can be used to investigate the genetic determinants of almost any biological process in human cells. The study has now been published in Nature Biotechnology.
View entry
News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry

Back to the news overview