Skip to main content
News Preiffer 06.2020
Prof. Dr. Alexander Pfeifer (left) and Dr. Thorsten Gnad (right) from the Institute of Pharmacology and Toxicology at the University Hospital Bonn.
© Katharina Wislsperger/UKBonn

News categories: Publication

Receptor makes mice strong and slim

Study by the University of Bonn identifies molecule that regulates two side effects of aging

Increasing abdominal girth and shrinking muscles are two common side effects of aging. Researchers at the University of Bonn from the Cluster of Excellence ImmunoSensation have discovered a receptor in mice that regulates both effects. Experiments with human cell cultures suggest that the corresponding signaling pathways might also exist in humans. The study, which also involved researchers from Spain, Finland, Belgium, Denmark and the USA, has now been published in the renowned journal "Cell Metabolism".

Publication

Thorsten Gnad, Gemma Navarro, Minna Lahesmaa, Laia Reverte-Salisa, Francesca Copperi, Arnau Cordomi, Jennifer Naumann, Aileen Hochhäuser, Saskia Haufs-Brusberg, Daniela Wenzel, Frank Suhr, Naja Zenius Jespersen, Camilla Scheele, Volodymyr Tsvilovskyy, Christian Brinkmann, Joern Rittweger, Christian Dani, Mathias Kranz, Winnie Deuther-Conrad, Holger K. Eltzschig, Tarja Niemi, Markku Taittonen, Peter Brust, Pirjo Nuutila, Leonardo Pardo, Bernd K. Fleischmann, Matthias Blüher, Rafael Franco, Wilhelm Bloch, Kirsi A. Virtanen, Alexander Pfeifer: Adenosine/A2B receptor signaling ameliorates the effects of ageing and counteracts obesity. Cell Metabolism, DOI: https://doi.org/10.1016/j.cmet.2020.06.006

Related news

News Florian Schmidt 09 2024

News categories: Publication

Central mechanism of inflammation decoded

The formation of pores by a particular protein, gasdermin D, plays a key role in inflammatory reactions. During its activation, an inhibitory part is split off. More than 30 of the remaining protein fragments then combine to form large pores in the cell membrane, which allow the release of inflammatory messengers. As methods for studying these processes in living cells have so far been inadequate, the sequence of oligomerization, pore formation and membrane incorporation has remained unclear until now.
View entry
Larvae of the fruit fly Drosophila (foreground) - have a kind of stretch sensor in the esophagus (grey structure in the middle). It reports swallowing processes to the brain. If food is ingested, special neurons of the enteric nervous system (red) release serotonin.

News categories: Publication

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have special sensors, or receptors, in their esophagus that are triggered as soon as the animal swallows something. If the larva has swallowed food, they tell the brain to release serotonin. This messenger substance ensures that the larva continues to eat. The researchers assume that humans also have a very similar control circuit. The results were recently published in the journal “Current Biology.”
View entry
Sophie Binder, Gregor Hagelüken, Niels Schneberger in the laboratory

News categories: Publication

Gene scissors switch off with built-in timer

CRISPR gene scissors, as new tools of molecular biology, have their origin in an ancient bacterial immune system. But once a virus attack has been successfully overcome, the cell has to recover. Researchers from the University Hospital Bonn (UKB) and the University of Bonn, in cooperation with researchers from the Institut Pasteur in France, have discovered a timer integrated into the gene scissors that enables the gene scissors to switch themselves off. The results of the study have been published in the renowned journal "Nucleic Acids Research".
View entry

Back to the news overview