Skip to main content
News Icon

News categories: Publication

The helicase DHX36 resolves G-quadruplex structures and supports stress response

The helicase DHX36 resolves G-quadruplex structures and supports stress response

DNA and RNA G-quadruplex structures are thermodynamically very stable arrangements of four nucleic acid strands, in which the guanines interact via Hoogsteen base pairing. It has been shown that the formation or resolution of RNA G‑quadruplex structures has severe impacts on diverse cellular processes such as transcription or translation. Interestingly, the formation of G-quadruplex structures in untranslated regions of mRNAs can render these mRNAs translationally inactive. The Paeschke lab characterized the RNA targets of DHX36, a 3′−5′ DEAH-box helicase, and discovered that it performs an important function in resolving G-quadruplex structures in the 5´ and 3' untranslated regions of mRNAs. The deletion of DHX36 resulted in an increased formation of stress granules and the phosphorylation of protein kinase R (PKR), caused by the accumulation of G-quadruplex structures in the cytoplasm. PKR is an important factor for the innate immune system and the integrated stress response. PKR is activated upon phosphorylation, which leads to the shutdown of global protein synthesis. In summary, the Paeschke lab could demonstrate that G-quadruplex structures within mRNAs and the cellular stress response are connected and that this connection is established via DHX36 and PKR.


Publication

https://www.immunosensation.de/research/publications/pubmed/dhx36-prevents-the-accumulation-of-translationally-inactive-mrnas-with-g4-structures-in-untranslated.html


Contact

Prof. Katrin Paeschke

Medical Clinic III

Related news

News Icon

News categories: Publication

New vulnerability of asthma immune cells discovered

Why do certain immune cells remain permanently active in allergic asthma – even in an environment that should actually damage them? A team from the University Hospital Bonn (UKB) and the University of Bonn has discovered that these cells only survive because they activate a special antioxidant protection mechanism. When this mechanism is blocked, allergic inflammation in mouse models decreases significantly. The results have now been published in the scientific journal Immunity.
View entry
The human P2X4 receptor

News categories: Publication

A starting point for the development of new pain and cancer drugs

The human P2X4 receptor plays an important role in chronic pain, inflammation and some types of cancer. Researchers at the University of Bonn and the University Hospital Bonn (UKB) have now discovered a mechanism that can inhibit this receptor. The results were recently published in the scientific journal Nature Communications and open up a pathway for the development of new drugs. A study carried out by the University of Bonn and the University Hospital Bonn throws light on how P2X2 can be inhibited. The results have recently been published in Nature Communications.
View entry
Kato research group

News categories: Publication

Ominous false alarm in the kidney

Bonn researchers have discovered how a small, naturally occurring RNA molecule in the kidney activates a mutated immune receptor, triggering a chain reaction. In cooperation with Nanyang Technological University Singapore and the University Hospital Würzburg, among others, the study provides an explanation for how a point mutation in the immune receptor RIG-I transforms the body's defense system into a self-destructive force and causes severe organ-specific autoimmune diseases. The results have now been published in the journal Science Immunology.
View entry

Back to the news overview