Skip to main content
News Icon

News categories: Publication

Tumor microenvironment of Pancreatic Cancer

Discrepancies in the Tumor Microenvironment of Spontaneous and Orthotopic Murine Models of Pancreatic Cancer Uncover a New Immunostimulatory Phenotype for B Cells

While studying B cells in pancreatic cancer, we noticed an important discrepancy between human data, which suggest B cells contribute to the anti-tumor response, and mouse data, which indicate an immunosuppressive, protumorigenic role. Most of the murine data, however, derives from orthotopic models, in which a pancreatic-cell line is injected in the pancreas of healthy mice and tumors develop rapidly. In order to clarify this discrepancy, we assessed B-cell infiltrates from orthotopics and a genetic mouse model, the KPC mouse, in which tumors develop spontaneously in the course of several months, due to overexpression of mutated KRAS and P53 in pancreatic cells. Our data showed that orthotopic tumors have no immune-cell infiltrate, while KPC tumors do, better mimicking human cancers. Furthermore, infiltrating B cells present a very different phenotype from B cells residing in the spleen and lymph-nodes, showing signs of activation and differentiation, as well as expression of immune-stimulatory factors. Indeed, depletion of B cells with anti-CD20 treatment in KPC mice, did not cause a decrease in tumor growth. As B-cell infiltration correlated with T-cell and DC infiltration, we hypothesize that B cells infiltrating pancreatic tumors contribute to the adaptive anti-tumor response and therefore have tumor suppressing roles. However, B cells residing in secondary lymphoid organs have a different, possibly more immunosuppressive phenotype. Our results indicate that strategies to increase tumor infiltration by immune cells could be beneficial in the treatment of this dismal disease.


Publication

https://pubmed.ncbi.nlm.nih.gov/30972056/


Contact

Dr. Melania Capasso

DZNE

Related news

AG Kürthen Multiple Sclerosis Bonn

News categories: Publication

Potential target for MS therapy discovered

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by the immune system. B cells, which are a type of white blood cell, play a role in the development of MS and are thus a target for therapies. Researchers at the University Hospital Bonn (UKB), the University of Bonn and the FAU Erlangen-Nuremberg identified the membrane protein MLC1 as a potential target antigen in MS. The results of the work have now been published in the renowned journal “Neurology Neuroimmunology & Neuroinflammation”.
View entry
NLRP3 Alzheimers McManus

News categories: Publication

Reducing Neuroinflammation Could Help Fight Alzheimer’s

Alzheimer’s disease is the most common cause of dementia. A promising approach for its treatment is the prevention of inflammatory processes in the brain. An international team of scientists around Dr. Róisín McManus, Prof. Eicke Latz and Prof. Michael Heneka now provide new evidence supporting this approach and potentially contributing to the development of more effective therapies. The results have now been published in the journal “Immunity”.
View entry
Bipolar disorder News Noethen

News categories: Publication

Large study on the genetics of bipolar disorder

Genetic factors play a major role in the development of bipolar disorder. In an effort to better understand the underlying biology, researchers are constantly studying the genetic makeup of people with bipolar disorder. The Psychiatric Genomics Consortium's Genome-Wide Association Study (GWAS) is the largest of its kind. The study analyzes data from ver 150,000 people of European, East Asian, African-American and Latin American descent. The latest results have now been published in the renowned scientific journal “Nature”.
View entry

Back to the news overview