Skip to main content

Alternating high-fat diet enhances atherosclerosis by neutrophil reprogramming.

Nature

Authors: Jean-Rémi Lavillegrand, Rida Al-Rifai, Sara Thietart, Théo Guyon, Marie Vandestienne, Raphael Cohen, Vincent Duval, Xiaodan Zhong, Daniel Yen, Mumin Ozturk, Yutaka Negishi, Joanne Konkel, Emmanuel Pinteaux, Olivia Lenoir, Jose Vilar, Ludivine Laurans, Bruno Esposito, Marius Bredon, Harry Sokol, Marc Diedisheim, Antoine-Emmanuel Saliba, Alma Zernecke, Clément Cochain, Jessica Haub, Alain Tedgui, Nancy A Speck, Soraya Taleb, Musa M Mhlanga, Andreas Schlitzer, Niels P Riksen, Hafid Ait-Oufella

Systemic immune responses caused by chronic hypercholesterolaemia contribute to atherosclerosis initiation, progression and complications. However, individuals often change their dietary habits over time, and the effects of an alternating high-fat diet (HFD) on atherosclerosis remain unclear. Here, to address this relevant issue, we developed a protocol using atherosclerosis-prone mice to compare an alternating versus continuous HFD while maintaining similar overall exposure periods. We found that an alternating HFD accelerated atherosclerosis in Ldlr and Apoe mice compared with a continuous HFD. This pro-atherogenic effect of the alternating HFD was also observed in ApoeRag2 mice lacking T, B and natural killer T cells, ruling out the role of the adaptive immune system in the observed phenotype. Discontinuing the HFD in the alternating HFD group downregulated RUNX1, promoting inflammatory signalling in bone marrow myeloid progenitors. After re-exposure to an HFD, these cells produced IL-1β, leading to emergency myelopoiesis and increased neutrophil levels in blood. Neutrophils infiltrated plaques and released neutrophil extracellular traps, exacerbating atherosclerosis. Specific depletion of neutrophils or inhibition of IL-1β pathways abolished emergency myelopoiesis and reversed the pro-atherogenic effects of the alternating HFD. This study highlights the role of IL-1β-dependent neutrophil progenitor reprogramming in accelerated atherosclerosis induced by alternating HFD.

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

PMID: 39232165

Participating cluster members