Prof. Dr. Peter Krawitz
Institute for Genomic Statistics and Bioinformatics
pkrawitz@uni-bonn.de View member: Prof. Dr. Peter Krawitz
BMC medical genomics
BACKGROUND & AIMS: We aimed to assess the performance of European-derived polygenic risk scores (PRSs) for common metabolic diseases such as coronary artery disease (CAD), obesity, and type 2 diabetes (T2D) in the South Asian (SAS) individuals in the UK Biobank. Additionally, we studied the interaction between PRS and family history (FH) in the same population.
METHODS: To calculate the PRS, we used a previously published model derived from the EUR population and applied it to the individuals of SAS ancestry from the UKB study. Each PRS was adjusted according to an individual's genotype location in the principal components (PC) space to derive an ancestry adjusted PRS (aPRS). We calculated the percentiles based on aPRS and stratified individuals into three aPRS categories: low, intermediate, and high. Considering the intermediate-aPRS percentile as a reference, we compared the low and high aPRS categories and generated the odds ratio (OR) estimates. Further, we measured the combined role of aPRS and first-degree family history (FH) in the SAS population.
RESULTS: The risk of developing severe obesity for SAS individuals was almost twofold higher for individuals with high aPRS than for those with intermediate aPRS, with an OR of 1.95 (95% CI = 1.71-2.23, P < 0.01). At the same time, the risk of severe obesity was lower in the low-aPRS group (OR = 0.60, CI = 0.53-0.67, P < 0.01). Results in the same direction were found in the EUR data, where the low-PRS group had an OR of 0.53 (95% CI = 0.51-0.56, P < 0.01) and the high-PRS group had an OR of 2.06 (95% CI = 2.00-2.12, P < 0.01). We observed similar results for CAD and T2D. Further, we show that SAS individuals with a familial history of CAD and T2D with high-aPRS are associated with a higher risk of these diseases, implying a greater genetic predisposition.
CONCLUSION: Our findings suggest that CAD, obesity, and T2D GWAS summary statistics generated predominantly from the EUR population can be potentially used to derive aPRS in SAS individuals for risk stratification. With future GWAS recruiting more SAS participants and tailoring the PRSs towards SAS ancestry, the predictive power of PRS is likely to improve further.
© 2023. The Author(s).
PMID: 37438803
Institute for Genomic Statistics and Bioinformatics
pkrawitz@uni-bonn.de View member: Prof. Dr. Peter Krawitz