Prof. Dr. Mihai Netea
Life & Medical Sciences Institute (LIMES)
mnetea@uni-bonn.de View member: Prof. Dr. Mihai Netea
Cell reports
Since the vast majority of species solely rely on innate immunity for host defense, it stands to reason that a critical evolutionary trait like immunological memory evolved in this primitive branch of our immune system. There is ample evidence that vaccines such as bacillus Calmette-Guérin (BCG) induce protective innate immune memory responses (trained immunity) against heterologous pathogens. Here we show that while BCG vaccination significantly reduces morbidity and mortality against influenza A virus (IAV), it fails to provide protection against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In contrast to IAV, SARS-CoV-2 infection leads to unique pulmonary vasculature damage facilitating viral dissemination to other organs, including the bone marrow (BM), a central site for BCG-mediated trained immunity. Finally, monocytes from BCG-vaccinated individuals mount an efficient cytokine response to IAV infection, while this response is minimal following SARS-CoV-2. Collectively, our data suggest that the protective capacity of BCG vaccination is contingent on viral pathogenesis and tissue tropism.
Copyright © 2022 The Author(s). Published by Elsevier Inc. All rights reserved.
PMID: 35235831
Life & Medical Sciences Institute (LIMES)
mnetea@uni-bonn.de View member: Prof. Dr. Mihai Netea