Skip to main content

Deep phenotyping and lifetime trajectories reveal limited effects of longevity regulators on the aging process in C57BL/6J mice.

Nature communications

Authors: Kan Xie, Helmut Fuchs, Enzo Scifo, Dan Liu, Ahmad Aziz, Juan Antonio Aguilar-Pimentel, Oana Veronica Amarie, Lore Becker, Patricia da Silva-Buttkus, Julia Calzada-Wack, Yi-Li Cho, Yushuang Deng, A Cole Edwards, Lillian Garrett, Christina Georgopoulou, Raffaele Gerlini, Sabine M Hölter, Tanja Klein-Rodewald, Michael Kramer, Stefanie Leuchtenberger, Dimitra Lountzi, Phillip Mayer-Kuckuk, Lena L Nover, Manuela A Oestereicher, Clemens Overkott, Brandon L Pearson, Birgit Rathkolb, Jan Rozman, Jenny Russ, Kristina Schaaf, Nadine Spielmann, Adrián Sanz-Moreno, Claudia Stoeger, Irina Treise, Daniele Bano, Dirk H Busch, Jochen Graw, Martin Klingenspor, Thomas Klopstock, Beverly A Mock, Paolo Salomoni, Carsten Schmidt-Weber, Marco Weiergräber, Eckhard Wolf, Wolfgang Wurst, Valérie Gailus-Durner, Monique M B Breteler, Martin Hrabě de Angelis, Dan Ehninger

Current concepts regarding the biology of aging are primarily based on studies aimed at identifying factors regulating lifespan. However, lifespan as a sole proxy measure for aging can be of limited value because it may be restricted by specific pathologies. Here, we employ large-scale phenotyping to analyze hundreds of markers in aging male C57BL/6J mice. For each phenotype, we establish lifetime profiles to determine when age-dependent change is first detectable relative to the young adult baseline. We examine key lifespan regulators (putative anti-aging interventions; PAAIs) for a possible countering of aging. Importantly, unlike most previous studies, we include in our study design young treated groups of animals, subjected to PAAIs prior to the onset of detectable age-dependent phenotypic change. Many PAAI effects influence phenotypes long before the onset of detectable age-dependent change, but, importantly, do not alter the rate of phenotypic change. Hence, these PAAIs have limited effects on aging.

© 2022. The Author(s).

PMID: 36369285

Participating cluster members