Prof. Dr. Matthias Schmid
Institute of medical Biometry, Computer Science and Epidemiology
sekretariat@imbie.uni-bonn.de View member: Prof. Dr. Matthias Schmid
Allergy
BACKGROUND: Atopic dermatitis (AD) and psoriasis vulgaris (PV) are almost mutually exclusive diseases with different immune polarizations, mechanisms and therapeutic targets. Switches to the other disease ("Flip-Flop" [FF] phenomenon) can occur with or without systemic treatment and are often referred to as paradoxical reactions under biological therapy.
METHODS: The objective was to develop a diagnostic algorithm by combining clinical criteria of AD and PV to identify FF patients. The algorithm was prospectively validated in patients enrolled in the CK-CARE registry in Bonn, Germany. Afterward, algorithm refinements were implemented based on machine learning.
RESULTS: Three hundred adult Caucasian patients were included in the validation study (n = 238 with AD, n = 49 with PV, n = 13 with FF; mean age 41.2 years; n = 161 [53.7%] female). The total FF scores of the PV and AD groups differed significantly from the FF group in the validation data (p < .001). The predictive mean generalized Youden-Index of the initial model was 78.9% [95% confidence interval 72.0%-85.6%] and the accuracy was 89.7%. Disease group-specific sensitivity was 100% (FF), 95.0% (AD), and 61.2% (PV). The specificity was 89.2% (FF), 100% (AD), and 100% (PV), respectively.
CONCLUSION: The FF algorithm represents the first validated tool to identify FF patients.
© 2023 The Authors. Allergy published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
PMID: 37864390
Institute of medical Biometry, Computer Science and Epidemiology
sekretariat@imbie.uni-bonn.de View member: Prof. Dr. Matthias SchmidDepartment of Dermatology & Allergology
direktion.dermatologie@ukbonn.de View member: Prof. Dr. Dr. Thomas Bieber