Skip to main content

Human brain organoids assemble functionally integrated bilateral optic vesicles.

Cell stem cell

Authors: Elke Gabriel, Walid Albanna, Giovanni Pasquini, Anand Ramani, Natasa Josipovic, Aruljothi Mariappan, Friedrich Schinzel, Celeste M Karch, Guobin Bao, Marco Gottardo, Ata Alp Suren, Jürgen Hescheler, Kerstin Nagel-Wolfrum, Veronica Persico, Silvio O Rizzoli, Janine Altmüller, Maria Giovanna Riparbelli, Giuliano Callaini, Olivier Goureau, Argyris Papantonis, Volker Busskamp, Toni Schneider, Jay Gopalakrishnan

During embryogenesis, optic vesicles develop from the diencephalon via a multistep process of organogenesis. Using induced pluripotent stem cell (iPSC)-derived human brain organoids, we attempted to simplify the complexities and demonstrate formation of forebrain-associated bilateral optic vesicles, cellular diversity, and functionality. Around day 30, brain organoids attempt to assemble optic vesicles, which develop progressively as visible structures within 60 days. These optic vesicle-containing brain organoids (OVB-organoids) constitute a developing optic vesicle's cellular components, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. OVB-organoids also display synapsin-1, CTIP-positive myelinated cortical neurons, and microglia. Interestingly, various light intensities could trigger photosensitive activity of OVB-organoids, and light sensitivities could be reset after transient photobleaching. Thus, brain organoids have the intrinsic ability to self-organize forebrain-associated primitive sensory structures in a topographically restricted manner and can allow interorgan interaction studies within a single organoid.

Copyright © 2021 Elsevier Inc. All rights reserved.

PMID: 34407456

Participating cluster members