Dr. Thomas Ulas
Life & Medical Sciences Institute (LIMES)
t.ulas@uni-bonn.de View member: Dr. Thomas Ulas
Cell metabolism
Macrophages possess intrinsic tumoricidal activity, yet tumor-associated macrophages (TAMs) rapidly adopt an alternative phenotype within the tumor microenvironment that is marked by tumor-promoting immunosuppressive and trophic functions. The mechanisms that promote such TAM polarization remain poorly understood, but once identified, they may represent important therapeutic targets to block the tumor-promoting functions of TAMs and restore their anti-tumor potential. Here, we have characterized TAMs in a mouse model of metastatic ovarian cancer. We show that ovarian cancer cells promote membrane-cholesterol efflux and depletion of lipid rafts from macrophages. Increased cholesterol efflux promoted IL-4-mediated reprogramming, including inhibition of IFNγ-induced gene expression. Genetic deletion of ABC transporters, which mediate cholesterol efflux, reverts the tumor-promoting functions of TAMs and reduces tumor progression. These studies reveal an unexpected role for membrane-cholesterol efflux in driving TAM-mediated tumor progression while pointing to a potentially novel anti-tumor therapeutic strategy.
Copyright © 2019 Elsevier Inc. All rights reserved.
PMID: 30930171
Life & Medical Sciences Institute (LIMES)
t.ulas@uni-bonn.de View member: Dr. Thomas UlasLife & Medical Sciences Institute (LIMES)
j.schultze@uni-bonn.de View member: Prof. Dr. med. Joachim L. Schultze