Prof. Dr. Jan Hasenauer
Life and Medical Sciences Institute (LIMES) and Hausdorff Center for Mathematics
jan.hasenauer@uni-bonn.de View member: Prof. Dr. Jan Hasenauer
Nature communications
Despite intensive research since the emergence of SARS-CoV-2, it has remained unclear precisely which components of the early immune response protect against the development of severe COVID-19. Here, we perform a comprehensive immunogenetic and virologic analysis of nasopharyngeal and peripheral blood samples obtained during the acute phase of infection with SARS-CoV-2. We find that soluble and transcriptional markers of systemic inflammation peak during the first week after symptom onset and correlate directly with upper airways viral loads (UA-VLs), whereas the contemporaneous frequencies of circulating viral nucleocapsid (NC)-specific CD4 and CD8 T cells correlate inversely with various inflammatory markers and UA-VLs. In addition, we show that high frequencies of activated CD4 and CD8 T cells are present in acutely infected nasopharyngeal tissue, many of which express genes encoding various effector molecules, such as cytotoxic proteins and IFN-γ. The presence of IFNG mRNA-expressing CD4 and CD8 T cells in the infected epithelium is further linked with common patterns of gene expression among virus-susceptible target cells and better local control of SARS-CoV-2. Collectively, these results identify an immune correlate of protection against SARS-CoV-2, which could inform the development of more effective vaccines to combat the acute and chronic illnesses attributable to COVID-19.
© 2023. The Author(s).
PMID: 37225706
Life and Medical Sciences Institute (LIMES) and Hausdorff Center for Mathematics
jan.hasenauer@uni-bonn.de View member: Prof. Dr. Jan Hasenauer