PD Dr. Gregor Hagelüken
Institute of Structural Biology
hagelueken@uni-bonn.de View member: PD Dr. Gregor Hagelüken
Methods in molecular biology (Clifton, N.J.)
Every membrane protein is involved in close interactions with the lipid environment of cellular membranes. The annular lipids, that are in direct contact with the polypeptide, can in principle be seen as an integral part of its structure, akin to the first hydration shell of soluble proteins. It is therefore desirable to investigate the structure of membrane proteins and especially their conformational flexibility under conditions that are as close as possible to their native state. This can be achieved by reconstituting the protein into proteoliposomes, nanodiscs, or bicelles. In recent years, PELDOR/DEER spectroscopy has proved to be a very useful method to study the structure and function of membrane proteins in such artificial membrane environments. The technique complements both X-ray crystallography and cryo-EM and can be used in combination with virtually any artificial membrane environment and under certain circumstances even in native membranes. Of the above-mentioned membrane mimics, bicelles are currently the least often used for PELDOR studies, although they offer some advantages, especially their ease of use. Here, we provide a step-by-step protocol for studying a bicelle reconstituted membrane protein with PELDOR/DEER spectroscopy.
PMID: 33582999
Institute of Structural Biology
hagelueken@uni-bonn.de View member: PD Dr. Gregor Hagelüken