Skip to main content

Persistent epigenetic memory of SARS-CoV-2 mRNA vaccination in monocyte-derived macrophages.

Molecular systems biology

Authors: Alexander Simonis, Sebastian J Theobald, Anna E Koch, Ram Mummadavarapu, Julie M Mudler, Andromachi Pouikli, Ulrike Göbel, Richard Acton, Sandra Winter, Alexandra Albus, Dmitriy Holzmann, Marie-Christine Albert, Michael Hallek, Henning Walczak, Thomas Ulas, Manuel Koch, Peter Tessarz, Robert Hänsel-Hertsch, Jan Rybniker

Immune memory plays a critical role in the development of durable antimicrobial immune responses. How precisely mRNA vaccines train innate immune cells to shape protective host defense mechanisms remains unknown. Here we show that SARS-CoV-2 mRNA vaccination significantly establishes histone H3 lysine 27 acetylation (H3K27ac) at promoters of human monocyte-derived macrophages, suggesting epigenetic memory. However, we found that two consecutive vaccinations were required for the persistence of H3K27ac, which matched with pro-inflammatory innate immune-associated transcriptional changes and antigen-mediated cytokine secretion. H3K27ac at promoter regions were preserved for six months and a single mRNA booster vaccine potently restored their levels and release of macrophage-derived cytokines. Interestingly, we found that H3K27ac at promoters is enriched for G-quadruplex DNA secondary structure-forming sequences in macrophage-derived nucleosome-depleted regions, linking epigenetic memory to nucleic acid structure. Collectively, these findings reveal that mRNA vaccines induce a highly dynamic and persistent training of innate immune cells enabling a sustained pro-inflammatory immune response.

© 2025. The Author(s).

PMID: 40133533

Participating cluster members