Skip to main content

Textural features in FDG-PET/CT can predict outcome in melanoma patients to treatment with Vemurafenib and Ipililumab.

Nuklearmedizin. Nuclear medicine

Authors: Daniela Dittrich, Thomas Pyka, Klemens Scheidhauer, Susanne Lütje, Markus Essler, Ralph A Bundschuh

AIM:  Recently, textural parameters assessed in FDG-PET/CT as surrogate marker for tumor heterogeneity have been shown to provide prognostic power. Therefore, we investigated the use of such parameters in FDG-PET/CT examinations before the start of immunotherapy with vemurafenib or ipilimumab in patients with malignant melanoma.

METHODS:  In this retrospective analysis 26 patients with histologically proven advanced melanoma were included. FGD-PET/CT was performed before the start of treatment either with vemurafenib (n = 9) or ipilimumab (n = 17) and tumors were analyzed for textural parameters as well as conventional PET features. Lesions were classified as responding or not responding following PERCIST criteria. ROC analysis was performed to analyze the predictive power and cut-off values. In addition, the change of maximum SUV of the lesions between pretherapeutic PET/CT and another PET/CT performed about 12 weeks after start of treatment was evaluated and correlated with the pretreatment parameters.

RESULTS:  In both groups, six textural parameters showed statistically significant predictive power as well as the metabolic tumor volume. In the group treated with vemurafenib eight additional textural parameters as well as the maximum and mean SUV and the TLG showed significance. A statistically significant correlation between the change of maximum SUV in the course of treatment and the pretherapeutic parameters was found in both treatment groups for three textural features.

CONCLUSION:  In patients with malignant melanoma textural parameters in pretherapeutic FDG-PET/CT examinations seem to have prognostic power for treatment response of immunotherapy with vemurafenib and ipilimumab. This can be an important step towards personalized tumor therapy.

© Georg Thieme Verlag KG Stuttgart · New York.

PMID: 32259852

Participating cluster members