Prof. Dr. Mihai Netea
Life & Medical Sciences Institute (LIMES)
mnetea@uni-bonn.de View member: Prof. Dr. Mihai Netea
Cell reports
Trained immunity confers a sustained augmented response of innate immune cells to a secondary challenge, via a process dependent on metabolic and transcriptional reprogramming. Because of its previous associations with metabolic and transcriptional memory, as well as the importance of H3 histone lysine 4 monomethylation (H3K4me1) to innate immune memory, we hypothesize that the Set7 methyltransferase has an important role in trained immunity induced by β-glucan. Using pharmacological studies of human primary monocytes, we identify trained immunity-specific immunometabolic pathways regulated by Set7, including a previously unreported H3K4me1-dependent plasticity in the induction of oxidative phosphorylation. Recapitulation of β-glucan training in vivo additionally identifies Set7-dependent changes in gene expression previously associated with the modulation of myelopoiesis progenitors in trained immunity. By revealing Set7 as a key regulator of trained immunity, these findings provide mechanistic insight into sustained metabolic changes and underscore the importance of characterizing regulatory circuits of innate immune memory.
Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.
PMID: 32320649
Life & Medical Sciences Institute (LIMES)
mnetea@uni-bonn.de View member: Prof. Dr. Mihai Netea